Swimming Training Evaluation Method Based on Convolutional Neural Network
نویسندگان
چکیده
منابع مشابه
Incremental Convolutional Neural Network Training
Experimenting novel ideas on deep convolutional neural networks (DCNNs) with big datasets is hampered by the fact that network training requires huge computational resources in the terms of CPU and GPU power and hours. One option is to downscale the problem, e.g., less classes and less samples, but this is undesirable with DCNNs whose performance is largely data-dependent. In this work, we take...
متن کاملA conjugate gradient based method for Decision Neural Network training
Decision Neural Network is a new approach for solving multi-objective decision-making problems based on artificial neural networks. Using inaccurate evaluation data, network training has improved and the number of educational data sets has decreased. The available training method is based on the gradient decent method (BP). One of its limitations is related to its convergence speed. Therefore,...
متن کاملAn Effective Training Method For Deep Convolutional Neural Network
We present a training method to speed up the training and improve the performance of deep convolutional neural networks (CNN). We propose a nonlinearity generator, which makes the deep CNN as a linear model in the initial state, and then introduces nonlinearity during the training procedure to improve the model capacity. We theoretically show that the mean shift problem in the neural network ma...
متن کاملA Radon-based Convolutional Neural Network for Medical Image Retrieval
Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...
متن کاملEMG-based wrist gesture recognition using a convolutional neural network
Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Complexity
سال: 2021
ISSN: 1099-0526,1076-2787
DOI: 10.1155/2021/4868399